Statistics Review Chapter 3, with 2.5/2.6

EC200: Econometrics and Applications

Learning objectives

- ▶ Understand and use key vocabulary
- ▶ Construct confidence intervals
- Conduct one and two-sided hypothesis tests
 - Using z- and t- distributions
 - Interpret *p*-values

Statistics Review

1 Finite sample properties of estimators

2 Confidence intervals

3 Hypothesis testing

- Overview
- P-values

What even *is* statistics?

Statistics: use a sample to make an inference about a population.

Greek

- Letters like β_1 are truth
- We estimate them with β₁
 what we think truth is based on data

Latin

- Letters like X are actual data from our sample
- We use them to make calculations, like \bar{X}

 $Data \rightarrow Calculation \rightarrow Estimate \xrightarrow{\text{hopefully!}} Truth$

Confidence intervals 00000

Random sampling

Simple random sampling	Definition
Method of choosing a set of observations (sample) from a population, such that each member is equally likely to be included. We label each of n observations as $Y_1, Y_2, \ldots Y_n$	
Independent and identically distributed (i.i.d.)	Definition
When $Y_1, Y_2, \dots Y_n$ are	
1 drawn from the same distribution <i>(identical)</i> , and	
2 are independent (conditional = marginal distribution)	

With simple random sampling, the random variables Y_i are *i.i.d.*

Finite sample properties of estimators

- ► An estimator of a population parameter is a random variable that depends on sample information, whose value approximates this parameter
- ▶ A specific value of that random variable is an estimate.

Example 1

Draw a sample of size n from a population, with parameter μ . One useful estimator:

$$\bar{Y} = \frac{\sum_{i=1}^{n} Y_i}{n}$$

 \overline{Y} is an estimator, and \overline{y} is the estimate. A sampling distribution is the distribution of an estimator.

EC200

Chapter 3: Statistics Review

Confidence intervals 00000 Hypothesis testing 0000000 000000

Law of large numbers

Law of large numbers

Definition

If Y_i , i = 1, ..., n is i.i.d, with $E(Y_i) = \mu_Y$ and if large outliers are unlikely (if $var(Y_i) = \sigma_Y^2 < \infty$), then

$$\bar{Y} \xrightarrow{p} \mu_Y$$

That is, \overline{Y} "converges in probability" to μ_Y . Alternatively, we can say that \overline{Y} "is consistent" for μ_Y

Confidence intervals 00000 Hypothesis testing 0000000 000000

Central limit theorem

 $\begin{array}{c} {\rm Confidence\ intervals}\\ {\rm 00000} \end{array}$

Hypothesis testing 0000000 000000

Central limit theorem

Central limit theorem

Definition

- Let $X_1, X_2, ..., X_n$ be a set of *n* independent random variables with identical distributions with mean μ and variance σ^2 , and \bar{X} is the mean of these random variables
- As n becomes large, the distribution of

$$Z = \frac{\bar{X} - \mu_X}{\sigma_{\bar{X}}}$$

approaches the standard normal distribution (is "asymptotically normal")

Characteristics of point estimators

We evaluate how good an estimator is based on its bias and efficiency:

- Bias: Difference between the expectation of the estimator and the parameter
- Efficiency: Variance of the estimator how much it differs from the true parameter

Bias

Bias

Let $\hat{\theta}$ be an estimator of parameter θ :

Definition

The difference between the expectation of the estimator and the parameter

$$Bias(\hat{\theta}) = E[\hat{\theta}] - \theta$$

The bias of an unbiased estimator is 0.

Confidence intervals 00000 Hypothesis testing 0000000 000000

Unbiasedness

$\hat{\theta_1}$ is an unbiased estimator, $\hat{\theta_2}$ is biased:

Efficiency

- Often, there are several unbiased estimators.
- ► Let $\hat{\theta_1}$ and $\hat{\theta_2}$ be two unbiased estimators of θ . Then, $\hat{\theta_1}$ is more efficient than $\hat{\theta_2}$ if

$$Var(\hat{\theta_1}) < Var(\hat{\theta_2})$$

Confidence limits for μ

Confidence interval:

$$\bar{x} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

where $z_{\alpha/2}$ is the normal distribution value for the probability of $\alpha/2$ in each tail

If σ unknown, then use the t distribution instead

Confidence intervals 0 = 000

Hypothesis testing 0000000 000000

Finding $z_{\alpha/2}$

Consider a 95% confidence interval:

CI Example

Example 2

A sample of 11 circuits from a large, normal population has a mean resistance of 2.20 ohms. We know from past testing that the population standard deviation is 0.35 ohms.

Determine a 95% confidence interval for the true mean resistance of the population.

CI Example

A sample of 11 circuits from a large, normal population has a mean resistance of 2.20 ohms. We know from past testing that the population standard deviation is 0.35 ohms. Find a 95% CI for the true mean resistance of the population.

1 List what we know:

$$n = 11$$
 $\bar{x} = 2.20$
 $\sigma = 0.35$ $\alpha = 0.05$

population normal

2 List what we want to find:

$$\bar{x} \pm z \frac{\sigma}{\sqrt{n}}$$

CI Example

A sample of 11 circuits from a large, normal population has a mean resistance of 2.20 ohms. We know from past testing that the population standard deviation is 0.35 ohms. Find a 95% CI for the true mean resistance of the population.

 3 Find the right value of z_{α/2}: α = 0.05 ⇒ z_{0.05/2} ⇒ P(Z < z_{0.025}) = 0.975 ⇒ z_{0.025} = 1.96

4 Plug in remaining values:

$$95\% CI = 2.20 \pm 1.96 \frac{0.35}{\sqrt{11}}$$
$$= 2.20 \pm 0.2068$$
$$1.9932 < \mu < 2.4068$$

Concepts of hypothesis testing

A hypothesis is a claim (assumption) about a population parameter:

- One sample: The mean monthly cell phone bill in Vermont is $\mu = 52 .
- ▶ Two sample: The mean monthly cell phone bill in Vermont equals the mean monthly cell phone bill in Massachusetts.

Setting up hypotheses

- ▶ Null hypothesis (H_0) states the assumption (numerical) to be tested
- ▶ Alternative hypothesis (H_1) is the "opposite" of the null
- Determine whether there is enough evidence to reject the null hypothesis.
- Example: The average number of TV sets in U.S. homes equals three $(H_0: \mu = 3, H_1: \mu \neq 3)$.

One-tail tests

In many cases, the alternative hypothesis focuses on one particular direction.

▶ Does fuel additive *increase* gas mileage?

$$\begin{array}{l} H_0: \mu \leq 10.5 \\ H_1: \mu > 10.5 \end{array}$$

Upper-tail test since alternative hypothesis focused on upper tail.

▶ Does cholesterol drug *lower* LDL levels from average of 145?

$$H_0: \mu \ge 145 \\ H_1: \mu < 145$$

Lower-tail test since alternative hypothesis focused on lower tail.

Two-tail tests

Sometimes, we don't have a specific direction in mind.

Were average U.S. stock market returns affected by Hurricane Katrina, compared to their usual average of 4%?

$$H_0: \mu = 4$$
$$H_1: \mu \neq 4$$

Two-tailed test since we reject if stock returns are very high or very low

Level of significance, α

- Significance level defines the unlikely values of the sample statistic, the rejection region, if the null hypothesis is true
- Designated by α (level of significance) usually $\alpha = 0.01, 0.05, 0.10$
- Selected by researcher at beginning
- ▶ Determines the critical value of the test

Step-by-step

- **1** Set up H_0 and H_1
- **2** Determine *t*-statistic:

$$t = \frac{\bar{x} - \mu_0}{s/\sqrt{n}}$$

3 Compare test statistic to critical value(s) c, depends on α and one vs. two-sided test

a Upper tail: Reject H_0 if t > c

- **b** Lower tail: Reject H_0 if t < -c
- **c** Two tailed: Reject H_0 if |t| > c
- 4 Reject or do not reject H_0

Test statistics and critical values

We essentially "convert" our estimate to the t-distribution:

$$t = \frac{\bar{x} - \mu_0}{s/\sqrt{n}}$$

If we know σ or as *n* gets large, the *t* distribution converges to a standard normal (z) distribution.

P-value

The largest significance level at which we could carry out a hypothesis test and still fail to reject the null hypotheses.

- ▶ Also called "observed level of significance"
- Smallest value of α for which we can reject H_0

Example: Hypothesis test for mean

Example 3

A phone industry manager things that customer monthly cell phone bills have increased and now average over \$52 per month.

- ▶ The company wishes to test this claim, so it surveys 150 customers.
- ▶ The average phone bill is \$53.10 per month, with a standard deviation of \$10.
- ► Test the null hypothesis that bills have not increased at the 5% level.

Hypothesis testing 000000 000000

P-values

Example: Hypothesis test for mean

1 Write down what we know:

$$\mu_0 = 52 \ s = 10, \ n = 150$$

•
$$\alpha = 0.05, \, \bar{x} = 53.1$$

2 Set up hypotheses:

•
$$H_0: \mu \le 52$$

• $H_1: \mu > 52 \rightarrow what manager wants to prove$

▶ This is an *upper* tail test

Example: Hypothesis test for mean

- 3 Since we have a upper-tail test, we will reject if we have a t-test statistic greater than t_{α} .
- **4** Decision rule: Reject H_0 if $t = \frac{\bar{x} \mu_0}{s/\sqrt{n}} > 1.96$
- **5** Reject or do not reject:

$$z = \frac{\bar{x} - \mu_0}{s/\sqrt{n}} = \frac{53.1 - 52}{10/\sqrt{150}} = 1.347$$

DO NOT REJECT *H*₀

Calculate the p-value

- **3** Convert \bar{x} to test statistic $\Rightarrow 1.347$
- 4 Calculate *p*-value

$$P(Z > 1.347) = 1 - F(1.35) = 1 - 0.9115$$

= 0.0885

5 Do not reject, as $\alpha = 0.05 < 0.0885 = p$. Can reject only at significance level of 0.0885 or higher.

2 Confidence intervals

- 3 Hypothesis testing
 - Overview
 - P-values