

Exam Review

Upcoming:

(Optional) rough draft Exam Q & A **Nov 30** Nov 30

ExamDec 2Presentation dueDec 4

Paper due

Dec 8

UNDERGRADUATE WRITING CENTER

Research proposal feedback

Introduction

Home Publications Research Blog

The Introduction Formula

When I arrived at UBC, my colleague John Ries, who had been hired the year before, explained to me that Jim Brander had given him a formula for writing introductions. I'm afraid I didn't pay much attention at the time because I thought it would stifle my creative juices (is that a mixed metaphor?). Finally, I think I ended up internalizing the rules and now I thought I should make them explicit because they have served us well and I wish I could referee more papers that follow them.

Hook: Attract the reader's interest by telling them that this paper relates to something interesting. What
makes a topic interesting? Some combination of the following attributes makes Y something worth looking
at.

- As you move to your paper, you'll need an introduction.
- Introduction should **stand alone** (no surprises at the end!)
- A few suggestions from <u>Head</u>, <u>Sahm</u>, and <u>Evans</u>
- Hook >> Question(s) >> Approach >> Results >> Contribution

Literature review/background

• CONDENSE

NO

In the paper "Here is the title of my paper," the authors Benjamin and Locke conduct a study to measure the impact of sunshine on ice cream viscosity. They find that sunshine increases the rate of change of the ice cream viscosity."

BETTER

Benjamin and Locke (2019) find that sunshine increases the rate of change of ice cream viscosity

BEST

Sunshine melts ice cream (Benjamin and Lock, 2019)

Literature review

• SYNTHESIZE

- What does the body of evidence collectively tell you?
- Where does your work fit in?

Level 1: There are many papers on ice cream. Hock and Jam (2015) find that ice cream is a delicious food. Ruddiger and Patel (2012) find that chocolate is a good flavor of ice cream.

Level 2: Hock and Jam (2015) find that ice cream is a delicious food. Recent studies find that chocolate ice cream is especially delicious (Ruddiger and Patel 2012). I will extend Ruddiger and Patel's analysis by considering pistachio ice cream.

Level 3: Several papers find that ice cream is delicious (Hock and Jam 2015; Tyrone and Pumba 2001), but recent studies have questioned these findings (Smith and Smithy 2019; Smitty and Smith 2020). I will examine the tastiness of ice cream with newer data and examine the role of air temperature, an potentially important mediating factor (Yang and Dobbles 2018).

Other notes

- Write a population model: appropriate subscripts, error terms
- Active voice, don't be afraid of I
- Remove personal motivation

You've got this!

Exam Review

Coverage

- Chapter 8: Non-linear regression
- Chapter 9: Internal/External validity
- Chapter 10: Panel Data
- Chapter 12: Instrumental variables

- Format
 - Same as last exam (on BB)

Big picture

What can go wrong with our regressions?

- Omitted variable bias (Always)
- Erroneous functional form (Chapter 8)
- Measurement error (Chapter 9)
- Reverse causality (Chapter 9/12)

• How can we solve these problems?

- Add more controls (always)
- Add higher-order terms and/or interactions (Chapter 8)
- Difference-in-differences model (Chapter 10)
- First-differences model (Chapter 10)
- Fixed effects model (Chapter 10)
- Instrumental variables model (Chapter 12)

What you need to know how to do

- What can go wrong with our regressions?
 - Omitted variable bias (Always)
 - Erroneous functional form (Chapter 8)
 - Measurement error (Chapter 9)
 - Reverse causality (Chapter 12)

• Based on descriptions of regressions, questions, data sets

- Identify when these problems are likely to occur
- Provide specific examples of what these problems look like
- Discuss the impact this will have on your estimated regression coefficients
- Discuss the impact this will have on your ability to determine causal relationships

What you need to know how to do

- How can we solve these problems?
 - Difference-in-differences model (Chapter 10)
 - First-differences model (Chapter 10)
 - Fixed effects model (Chapter 10)
 - Instrumental variables model (Chapter 12)
- Write population models of these models
- Write step-by-step how to implement these models
- Review results of estimation of these models, interpret coefficients, and "big picture" interpretation.
- Compare results from these models with OLS and discuss which is more appropriate and why

General skills you need

- Look at Stata output and/or formatted tables
 - Interpret coefficients (put numbers with them, and units!)
 - Interpret statistical significance (practice with those p-values)
 - Set up hypotheses and determine results
 - That a regression coefficient = 0
 - That multiple exclusion restrictions hold
 - Remember:
 - Set up a null
 - Set up an alternative
 - Compute a test statistic or p-value
 - Make a conclusion

Non-linear functions

- Polynomials
 - Compute effects by derivative (approximate) or by calculating for each value and taking the difference (exact)
- Logs
- Interaction terms
 - Binary-binary
 - Continuous-binary
 - Continuous-continuous

Using logs to compute percentage changes

- We do not take logs of percents/etc.
 - If LFP is 75% \rightarrow easy to think about 5pp increase (levels)
 - \rightarrow harder to think about about 5% increase \rightarrow 0.05/0.75 = 6.7pp increase
- Suppose we want to model hourly wages (wage) as a function of years of education (educ)

wage = 10.5 + 3educ Level-level: A 1-year increase in years of education is associated with a \$3 increase in wages (unit-unit)

log(wage) = 10.5 + 3log(educ)

Log-log (elasticity): A 1% increase in years of education is associated with a 3% increase in wages

Using logs to compute percentage changes

log(wage) = 10.5 + 3educ Log-level (semi-elasticity): A 1-year increase in years of education is associated with a 300% increase in wages (approximation)

EC 200 wage = 10.5 + 3log(educ)

Level-log: A 1% increase in years of education is associated with a 3/100 = \$0.03 increase in wages (approximation)

Example

assaults = number of assaults in a particular
weekend across a subset of US counties
attend = total weekend movie attendance (millions)

. sum assaults attend

Variable	Obs	Mean	Std. Dev.	Min	Max
assaults	516	4352.663	2120.995	683	8719
attend	516	18.86187	4.906061	9.8085	36.5028

Interpret the coefficient on attend

. regress assaults atten	nd
--------------------------	----

Source	SS	df	MS	Number o	ofobs =	516
Model Residual	121306939 2.1955e+09	1 514	121306939 4271367.88	Prob > F R-square	ed =	0.0000 0.0524
Total	2.3168e+09	515	4498621.42	Adj R-so Root MSE	uared = = =	0.0505 2066.7
assaults	Coef.	Std. Err.	t	P> t	95% Conf.	Interval]
attend _cons	98.92505 2486.752	18.56295 361.7598	5.33 6.87	0.000 6 0.000 1	52.45647 .776.042	135.3936 3197.461

1 million more attendees associated w/ 98 more weekend assaults.

Interpret the coefficient on ln_attend

. regress ln_assaults ln_attend

Source	SS	df	MS	Number of obs	=	516
				F(1, 514)	=	42.56
Model	15.652297	1	15.652297	Prob > F	=	0.0000
Residual	189.04063	514	.367783327	R-squared	=	0.0765
				Adj R-squared	=	0.0747
Total	204.692927	515	.397461994	Root MSE	=	.60645

ln_assaults	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
ln_attend	.6788489	.1040591	6.52	0.000	.4744154	.8832824
_cons	6.244118	.3033823	20.58	0.000	5.648096	6.84014

1% increase in attendance associated with 0.67% increase in assaults

Interpret the coefficient on attend

. regress ln_assaults attend ,robust

near regression	Number of obs	=	516
	F(1, 514)	=	29.21
	Prob > F	=	0.0000
	R-squared	=	0.0633
	Root MSE	=	.61077

ln_assaults	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
attend	.0323187	.0059794	5.40	0.000	.0205716	.0440659
_cons	7.606019	.1207744	62.98	0.000	7.368746	7.843291

0.032 \rightarrow When attendance increases by 1 million, assaults increase by 3.2%

Li

Interpret the coefficient on ln_attend

. regress assaults ln_attend

Source	SS	df	MS	Numbe	r of obs	5 =	516
Model Residual	141908410 2.1749e+09	1 514	141908410 4231287.2	- F(1,) Prob 2 R-squ	514) > F ared	= = - +	33.54 0.0000 0.0613 0.0594
Total	2.3168e+09	515	4498621.42	2 Root	MSE	=	2057
assaults	Coef.	Std. Err.	t	P> t	[95% (Conf.	Interval]
ln_attend _cons	2044.034 -1583.56	352.9558 1029.036	5.79 -1.54	0.000 0.124	1350.0 -3605.1	621 194	2737.448 438.0734

Interaction terms

. reg sleepdef male hrstotwrk yngkid marr maleXmarr maleXyngkid maleXhrs

Source	SS	df	MS	Number of obs	=	706
Model	8.81324949	7	1.25903564	Prob > F	=	0.0000
Residual	105.222161	698	.150748082	R-squared Adi B-squared	=	0.0773
Total	114.035411	705	.161752356	Root MSE	=	.38826

Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
1301368	.1032824	-1.26	0.208	3329181	.0726445
.0053348	.0014888 .0787625	3.58	0.000 0.157	.0024119	.0082578
1240539	.0521929	-2.38	0.018	2265278	02158
0827995	.0953117	-0.87	0.385	2699315	.1043325
.0023426 .126543	.0020265 .0671915	1.16 1.88	0.248	0016361 0053787	.0063213 .2584647
	Coef. 1301368 .0053348 .1116302 1240539 .004336 0827995 .0023426 .126543	Coef. Std. Err. 1301368 .1032824 .0053348 .0014888 .1116302 .0787625 1240539 .0521929 .004336 .0795358 0827995 .0953117 .0023426 .0020265 .126543 .0671915	Coef. Std. Err. t 1301368 .1032824 -1.26 .0053348 .0014888 3.58 .1116302 .0787625 1.42 1240539 .0521929 -2.38 .004336 .0795358 0.05 0827995 .0953117 -0.87 .0023426 .0020265 1.16 .126543 .0671915 1.88	Coef. Std. Err. t P> t 1301368 .1032824 -1.26 0.208 .0053348 .0014888 3.58 0.000 .1116302 .0787625 1.42 0.157 1240539 .0521929 -2.38 0.018 .004336 .0795358 0.05 0.957 0827995 .0953117 -0.87 0.385 .0023426 .0020265 1.16 0.248 .126543 .0671915 1.88 0.060	Coef. Std. Err. t P> t [95% Conf. 1301368 .1032824 -1.26 0.208 3329181 .0053348 .0014888 3.58 0.000 .0024119 .1116302 .0787625 1.42 0.157 0430096 1240539 .0521929 -2.38 0.018 2265278 .004336 .0795358 0.05 0.957 1518221 0827995 .0953117 -0.87 0.385 2699315 .0023426 .0020265 1.16 0.248 0016361 .126543 .0671915 1.88 0.060 0053787

What is the predicted probability of being sleep deficient for a married woman with young kids who works 40 hours/week? For an equivalent man?

Chapter 9

- Internal Validity
 - OBV → correlation between x and u non-zero → endogeneity
 - Errors in measurements!
 - Simultaneous causality bias
 - Functional form error
 - Selection bias
- External validity → we know what we set out to find out, but is it valid/applicable to tother populations/setting

Internal/External Validity

Internal Validity (5 threats)

Do we measure what we meant to measure?

External validity

Do the results generalize?

- Omitted variable bias
- Bad functional form
- Missing data/sample selection
- Measurement error
- Simultaneity

- What if we change the setting?
- What if we change the population?

Measurement error

- Dependent variable (if uncorrelated with x)
 - Reduces precision
 - Does not affect coefficients

- Independent variable
 - Classical (at random)
 - Attenuation bias

$$\widehat{\beta_1} \xrightarrow{p} \frac{\sigma_X^2}{\sigma_X^2 + \sigma_w^2} \beta_1$$

- Non-classical (not at random)
 - Bias!

Panel data methods

- Difference-in-differences
 - Requires "natural experiment"
 - For our purposes, before and after, "treatment" and "control"
 - Assumption of parallel trends

 $y_{it} = \beta_0 + \beta_1 Post_t + \beta_2 Treat_i + \beta_3 Post_t XTreat_i + u_{it}$

Panel data methods

- First differences:
 - Measure impact of change in x on change in y!
 - Subtract out any time-invariant characteristics

- Fixed effects
 - Control specifically for individual/unit-specific effects!
 - Control specifically for timeinvariant effects
 - Still assume no omitted variables

$$y_{it} = \beta_0 + \beta_1 x_{it} + a_i + b_t + u_{it}$$

 $\Delta y_i = \beta_0 + \beta_1 \Delta x_i + u_i$

Instrumental variables

- Find an <u>instrument:</u> something that manipulates
 Y *only through* manipulating
 X
 - That is, corr(z,x)> 0 but corr(z,u) = 0!

Good instruments are...

- **Powerful:** (First stage F-stat > 10)
- Excludable: Not correlated with y directly
- **Exogenous:** Not correlated with other unobserved factors

Instrumental variables

- First stage $x_1 = \alpha_0 + \alpha_1 z + \alpha_2 x_2 + v$ $\rightarrow \widehat{x_1} = \widehat{\alpha_0} + \widehat{\alpha_1} z + \widehat{\alpha_2} x_2$
- Second stage $y = \beta_0 + \beta_1 \widehat{x_1} + \beta_2 x_2 + u$

- β₁ is causal impact of x on y among those who responded to z
 - Local average treatment effect
- Covariates (like x₂) can help meet our identification assumptions